

中文

操作手册

S453

复杂工况及防爆型 热式质量流量计(插入式)

尊敬的客户:

感谢您选择 SUTO iTEC 的产品。

用户须在启动设备前完整阅读该操作手册并认真遵守。对于因未仔细查看或者未遵 守此操作手册规定而造成的任何损失,制造商概不负责。

如果用户违反此操作手册所描述或规定的方式,擅自改动设备,仪器保修将自动失效并且制造商免除责任。

请按照此操作手册说明的专业用途使用该设备。

对于该设备在未描述用途上的适用性,希尔思公司不做任何保证。由于运输、设备 性能或使用造成的间接损失,希尔思公司不承担责任。

版本: 2025-1

修改时间: 2025年1月

目录

1	安全说明	5
2	注册商标声明	7
3	应用	7
4	特点	8
5	技术参数	9
	5.1 测量参数	9
	5.2 信号接口及电源	10
	5.3 常规参数	10
	5.4 流量范围	12
6	尺寸图	13
	6.1 螺纹型	13
	6.2 法兰型	14
7	确定安装点	15
	7.1 预留额外的上、下游直管段	15
8	安装	21
	8.1 安装要求	21
	8.2 拆卸流量计	22
	8.3 维修后重新安装	22
	8.4 旋转屏幕	22
	8.5 电气连接	24
	8.5.1 连接图	.24
	8.5.2 引脚分配	.25
9	信号输出	.26
	9.1 模拟与脉冲输出	26
	9.1.1 模拟输出	.26
	9.1.2 脉冲/报警输出	.27
	9.2 Modbus/RTU 接口	27
	9.2.1 Modbus 保持寄存器	.29
	9.2.2 通道值信息	.30
	9.2.3 气体流量计的特殊设置	.32
	9.3 Modbus/TCP 接口	34
	9.4 S453 信号输出与用户设备的连接	35
1(0 使用显示屏进行操作	38
	10.1 显示屏上的信息	38
	10.1.1 状态栏中的图标	.39
	10.1.2 报警和错误码	.39
	10.2 操作	40
	10.3 亲甲树	41
1	1 用手机 App 进行配置	42
	11.1 可配置的参数	42

11.2 报警设置	43
11.3 数据记录器设置	44
11.3.1 设置记录器参数	44
11.3.2 查看数据图表	45
11.3.3 查看累积量图表	46
11.3.4 读出日志数据	46
11.4 使用手机 App S4C-FS	48
12 校准	49
13 维护	49
14 废弃物的处置	49
15 附录 - 流动调整器介绍	50
15.1 尺寸	50
15.2 安装	51
15.2.1 预安装	51
15.2.2 单独购买或者安装改造	51
15.3 订货信息	51

1 安全说明

] 请检查此操作手册和产品类型是否匹配。

请查看此手册中包含的所有备注和说明。手册中包含了前期准备和安装、 操作及维护各个阶段需要查看的重要信息。因此技术人员以及设备负责人 或授权人员必须仔细阅读此操作说明。

请将此操作手册放置在操作现场便于取阅的地方。针对此操作手册或者产品有任何 不明白或疑惑的地方,请联系制造商。

警告!

压缩空气!

任何与急速漏气或压缩空气系统带压部分的接触都有可能导致重大损伤甚至死亡!

- 不要超过允许的压力范围(请查看传感器标签)。
- 只使用耐压的安装材料。
- 避免人员接触急速的漏气或仪器带压的部分。
- 进行维修维护作业时必须确保系统没有压力。

警告!

电源电压!

任何与产品通电部分的接触都有可能导致重大损伤甚至死亡。

- 考虑所有电气安装相关的规定。
- 进行维修维护作业时必须断开任何电源连接。
- 系统中任何电气工作只允许授权人员进行操作。

- 不要超出许可的操作范围。
- 请确保产品运行在允许的条件范围内。
- 不要超出或者低于允许的存储/操作温度和压力。
- 经常对产品进行维护和校验,至少一年一次。

常规安全说明

- 该产品可以使用在爆炸性场所,请联系制造商。
- 请在准备阶段和安装使用过程中查看国家法规。

备注

- 不允许拆卸产品。
- 请使用扳手将产品安装妥当。

注意!

仪器故障会影响测量值!

- 产品必须正确安装并定期维护,否则将导致错误的测量数据,从而导致错误的测量结果。
- 安装设备时请查看气体流向。气体流向标记在外壳上。
- 不要超出传感器探头的最高工作温度。
- 避免传感器芯片上有凝结物,因为这会严重影响测量精度。

存储和运输

- 确保不带显示设备的运输温度为-30°C ~ +70°C。
- 存储和运输时建议使用设备的原包装。
- 避免阳光和紫外线的照射。
- 存储的湿度必须是 < 90%, 无冷凝。

2 注册商标声明

注册商标	商标持有者
SUTO [®]	SUTO iTEC
MODBUS®	MODBUS Organization
Android [™] , Google Play	Google LLC

3 应用

S453 热式质量流量计设计用于两种环境:

- 普通环境 此环境所使用的 S453 为非防爆型。
- 恶劣和危险环境 此环境所使用的 S453 为防爆型。

除非某些章节有特别说明,本手册的内容适用于两种型号。防爆操作和认证的内容见防爆认证手册。扫描下方的二维码或者点击链接可以获取该手册。

防爆认证手册

S453 主要测量压缩空气和工艺气体,其可测量的参数如下: S453 热式质量流量计设计用于恶劣和危险环境,主要测量压缩空气和工艺气体。 S453 可测量以下参数:

- 体积流量或质量流量
- 流速
- 累积量
- 压力
- 温度

测量单位的默认设置为:流速 m/s,体积流量 Sm³/h,累积量 Sm³,压力 bar,温度°C。其他单位可通过流量计上的显示屏或手机 App S4C-FS 进行设置。

4 特点

- 精确测量质量流量、标准流量、累积量、压力和温度。
- 坚固耐用的金属外壳设计,适用于室外及爆炸场所。
- 使用免费的智能手机 App S4C-FS 轻松访问内置的记录器中的测量数据。
- 所有与介质接触的部件材质均为不锈钢或镀镍金属。
- 结构设计上无可动部件,避免堵塞。
- 手机 App S4C-FS 通过无线接口在现场对流量计进行设置。
- 显示屏可直接显示实际测量值及状态信息。

5 技术参数

5.1 测量参数

CE	
流量	
精度*	±1.5% 读数值 ± 0.3% 满量程
可选单位	标准流量单位: Sm ³ /h 其他流量单位: Sm ³ /min, Sl/min, Sl/s, Scfm, kg/h, kg/min, kg/s, Nm ³ /min, Nl/min, Nl/s, Ncfm 标准流速单位: m/s
测量范围	0 m/s ~ 30 m/s (低量程校准) 0 m/s ~ 120 m/s (标准量程校准) 0 m/s ~ 240 m/s (最大量程校准) (不同管径的流量测量范围,参见 <u>5.4</u> 节) 说明: m/s: standard meter/second
重复性	0.25%读数值
传感器	热敏电阻
测量原理	热式质量流量原理
采样速率	3 次/秒
量程比	200:1
响应时间 (t90)	0.5 秒
累积量	
可选单位	Sm³, Sl, Scf, kg, Nm³, Nl, Ncf
压力	
精度	0.5%满量程
可选单位	bar, psi, kPa, MPa
测量范围	0 1.6 MPa(g) (option A1558) 0 4.0 MPa(g) (option A1559)
传感器	压阻式传感器
温度	
精度	0.5°C
可选单位	°C, °F

测量范围	-40°C ~ +140°C
传感器	Pt1000
参考条件	
可选条件	ISO1217 20°C 1000 mbar (Standard-Unit) DIN1343 0°C 1013.25 mbar (Norm-Unit)

说明:累积量每5分钟保存一次至流量计的存储单元中。如果设备在这5分钟内断 电,它将恢复上一个5分钟保存的累积量。

5.2 信号接口及电源

模拟输出		
信号	2 x (4 ~ 20) mA (4 线制), 隔离	
范围	0~最大流量,自由调整	
负载	最大 400 Ohm	
更新速率	1 次/秒	
脉冲输出		
信号	开关输出,常开,最大 30 VDC, 200 mA	
比例	每个累积量单位1个脉冲(可设置)	
报警	通道和阈值可自由设置	
现场总线		
协议	Modbus/RTU, Modbus/TCP	
电源		
电压, 电流, 功耗	16 VDC ~ 30 VDC	
	• 300 mA, 7 W (加热器关)	
	• 400 mA, 9.5 W (加热器开)	

5.3 常规参数

无线 App	S4C-FS(支持 Android 及 iOS)			
触摸屏	显示屏上三个光学按键			
显示				
集成显示屏	彩色显示屏			

材料	
工艺连接	不锈钢 1.4404 (SUS 3 16L)
外壳材质	铝合金
传感器	不锈钢 1.4404 (SUS 3 16L) 4J50 镀镍金属,玻璃
金属部件	不锈钢 1.4404 (SUS 3 16L)
其他	
电气连接	螺钉式接线端子
防护等级	IP67, IP65 (防爆款)
认证	CE, RoHS, FCC, 防爆(可选)
工艺连接	G3/4" (ISO 228/1)
重量	2.08 kg (200 mm 型) 2.15 kg (300 mm 型)
运行条件	
介质	空气, N2, O2, CO2 及其他非腐蚀性气体
介质湿度	< 90%, 无冷凝
运行压力	0 1.6 MPa(g) (option A1558) 0 4.0 MPa(g) (option A1559)
环境温度	-40°C ~ +65°C
储存温度	-40°C ~ +70°C
运输温度	-40°C ~ +70°C
介质温度	-30°C ~ +90°C (Ex Version) -30°C ~ +140°C
管道尺寸	DN25 (1″) 及以上

* 指定的精度仅在 5.4 节所示的最小和最大流速范围内有效。

5.4 流量范围

流量范围的参考条件:

- 空气中的标准流量
- 参考压力: 1000 hPa
- 参考温度: +20°C

管径		低速量程	标准量程	扩大量程	
(mm)		(Sm³/h)	(Sm³/h)	(Sm³/h)	
DN25	1″	27.3	0.2 ~ 48	0.8 ~ 191	1.5 ~ 382
DN32	1¼″	36.0	0.3 ~ 86	1.4 ~ 345	2.8 ~ 689
DN40	11⁄2″	41.9	0.5 ~ 119	1.9 ~ 475	3.8 ~ 949
DN50	2″	53.1	0.8 ~ 194	3.1 ~ 777	6.2 ~ 1,554
DN65	21⁄2″	68.9	1.3 ~ 332	5.3 ~ 1,329	N/A
DN80	3″	80.9	1.8 ~ 461	7.4 ~ 1,843	N/A

说明:

为方便根据不同管径、管道外型因子及参考条件计算流量范围,希尔思提供流量范围计算器。该工具可在线使用,访问 <u>http://www.suto-itec.com</u>,然后点击 支持 > 流量范围计算器,可在网页上计算流量范围。

- 传感器选择		— 计算器输出———			
传感器类型		ㅋ.나	004	62 (h	
5451	~	最入 序 动 W	804	Sm3/n	
测量部分					
		最小流量	3.2	Sm3/h	
测量范围					
standard	~	最大速度	120.0	Sm/s	
管道内径					
54.0					

6 尺寸图

6.1 螺纹型

管道标称尺寸 英寸 (DN)	L 总长度 (mm)	L1 入口长度 (mm)	H 总高度 (mm)	H1 从管道中心至外壳顶 部 (mm)	R 外螺纹
1″ (DN25)	475	275	299	282	R 1″
1¼″(DN32)	475	275	303	282	R 1¼″
11⁄2"(DN40)	475	275	306	282	R 11⁄2″
2″ (DN50)	475	275	312	282	R 2″
21⁄2"(DN65)	475	275	320	282	R 21⁄2 ″
3" (DN80)	475	275	326.5	282	R 3″

6.2 法兰型

管道标称尺	L ¥ K pře	L1 入口长度 (mm)	H 总高度 (mm)	H1 从管道中心至	法兰 (EN 1092-1 PN40)		
√ 英寸 (DN)	息长度 (mm)			外壳顶部 (mm)	ØD (mm)	ØK (mm)	nx ØL (mm)
1" (DN25)	475	275	339.5	282	115	85	4xØ14
1¼"(DN32)	475	275	352	282	140	100	4xØ18
11⁄2″(DN40)	475	275	357	282	150	110	4xØ18
2" (DN50)	475	275	364.5	282	165	125	4xØ18
21⁄2″(DN65)	475	275	374.5	282	185	145	8xØ18
3″ (DN80)	475	275	382	282	200	160	8xØ18

管道标称尺	L	L1	H	H1 从管道中心至	法兰	(ANSI/ 等级 30	B16.5 0)
可 英寸 (DN)	[。] 私代度 (mm)	入口长度 (mm)	忌咼度 (mm)	外壳顶部 (mm)	ØD (mm)	ØK (mm)	nx ØL (mm)
1" (DN25)	475	275	339.5	282	123.9	88.9	4xØ19
1¼"(DN32)	475	275	352	282	133.3	98.5	4xØ19
11⁄2″(DN40)	475	275	357	282	155.4	114.3	4xØ22.3
2" (DN50)	475	275	364.5	282	165.1	127	4xØ19
21⁄2″(DN65)	475	275	374.5	282	190.5	149.3	8xØ22.3
3" (DN80)	475	275	382	282	209.5	168.1	8xØ22.3

7 确定安装点

为达到技术参数中所标明的精度,必须将流量计插入到气体流动不受阻碍的一段直 管的中心点。

为使气体流动不受阻碍,流量计前面(上游段)以及后面(下游段)的管道必须足够长,绝对笔直,并且不应该有褶皱、接缝、弯道等障碍。

请确保现场有足够的安装空间,从而保证可以按照操作说明正确地安装流量计。

如果流量计安装有误,测量会出错。

- 必须注意上游段和下游段的设计,因为任何障碍物都可造成逆向或正向的涡流。
- 不建议用 S453 测量潮湿的气体。这种潮湿环境通常存在于压缩机出口,安装于此,流量计不会损坏,但测量精度无法保证。

7.1 预留额外的上、下游直管段

注意!

热式质量测量原理对测量点的上、下游直管段有一定的要求。为了确保测量的准确 性,需根据各种管道情况预留相应的上、下游直管段长度。流量计要安装在障碍物 (如阀门、过滤器和截止阀等)的上游,尽可能远离会易受干扰的管段。

S453 流量计自带上、下游测量段,但在安装中仍须添加额外的上、下游直管段。额外的上游段长度取决于管道的直径、流量计自身的上下游管段长度。

流量计自身的数据如下:

上游长度和下游长度指 S453 自身带的上、下游直管段的长度。

管道尺寸	DN25	DN32	DN40	DN50	DN65	DN80
管道内径 (mm)	27.3	36.0	41.9	53.1	68.9	80.9
上游长度 (mm)	275.0	275.0	275.0	275.0	275.0	275.0
下游长度 (mm)	200.0	200.0	200.0	200.0	200.0	200.0

参考下面的安装类型,从表中选择额外的上、下游直管段长度。

1. 轻微的弯曲 (弯度 < 90°)

A = 15 x 管道内径 - 上游长度

- B=5x管道内径 下游长度

A: 额外的上游直管段长度 B: 额外的下游直管段长度

管道尺寸	DN25	DN32	DN40	DN50	DN65	DN80
A (mm)	130	270	350	520	760	940
B (mm)	0	0	10	70	140	200

2. 扩大 (管道向测量段方向扩大)、缩小 (管道向测量段方向缩小), 及 90°拐角

- A = 20 x 管道内径 下游长度
- B = 5 x 管道内径 下游长度
- A: 额外的上游直管段长度 B: 额外的下游直管段长度

扩大 (管道向测量段方向扩大)

缩小 (管道向测量段方向缩小)

90°拐角

管道尺寸	DN25	DN32	DN40	DN50	DN65	DN80
A (mm)	270	450	560	790	1100	1340
B (mm)	0	0	10	70	140	200

- 3. 一个水平面上的两个 90° 拐角及 T 型管
 - A = 25 x 管道内径 下游长度
 - B = 5 x 管道内径 下游长度
 - A: 额外的上游直管段长度 B: 额外的下游直管段长度

一个水平面上的两个90°拐角

T型管

管道尺寸	DN25	DN32	DN40	DN50	DN65	DN80
A (mm)	410	630	770	1050	1450	1750
B (mm)	0	0	10	70	140	200

4. 三维方向上的两个拐角

- A = 40 x 管道内径 下游长度
- B = 5 x 管道内径 下游长度
- A: 额外的上游直管段长度 B: 额外的下游直管段长度

管道尺寸	DN25	DN32	DN40	DN50	DN65	DN80
A (mm)	820	1170	1400	1850	2480	2960
B (mm)	0	0	10	70	140	200

- 7. 5. 截止阀、过滤器或类似设备(未知设备)
 - A = 50 x 管道内径 下游长度
 - B = 5 x 管道内径 下游长度
 - A: 额外的上游直管段长度 B: 额外的下游直管段长度

过滤器或类似设备(未知设备)

管道尺寸	DN25	DN32	DN40	DN50	DN65	DN80
A (mm)	1090	1530	1820	2380	3170	3770
B (mm)	0	0	10	70	140	200

说明:

- 如果出现上述情况中的任意组合,务必采用最长的直管段。
- 表格中的上、下游管段长度为最低要求。如果安装过程中,可以使上游直管 段更长,则测量效果更好。
- 当流量计的进气端直管段长度无法满足要求时,建议在流量计的进气端加装
 流动调整器,从而获得理想的流速分布。流动调整器的介绍见附录 流动
 调整器介绍。

8 安装

在安装流量计之前,确保以下配件齐全。

数量	描述	订货号
1	S453 热式质量流量计 (管道式) 包括显示屏,数据记录器, 介质 1: 空气	S695 4530
1	密封圈	无订货号
1	测量管段	A1301 A1306 (R 型螺纹) A1321 A1328 (欧标法兰, EN-1092-1) A1341 A1348 (美标法兰, ANSI 16.5)
1	操作手册	无订货号
1	校准证书	无订货号

8.1 安装要求

S453 出厂时已装备测量管段,在现场安装时,请注意以下事项:

- 流量计按气流方向正确安装在管道上,查看外壳的流量方向标志,使其与压 缩空气或气体的流动方向一致。
- 气体流量须从上游段(长管段部分)流向下游段(短管段部分),如下图所示。

说明: 该流量计可以安装在任何方向上(水平,垂直,侧面和倒置)。安装时需考虑 7.1 节中所述的入口和出口处的直管段的要求。

8.2 拆卸流量计

以下步骤为正确拆卸流量计的过程。

- 1. 握住流量计。
- 2. 松开螺纹处连接螺母。
- 3. 慢慢拔出测量杆。
- **4.** 测量孔可以用封闭盖关闭(可选配件),系 统在维修时便可正常运行。

8.3 维修后重新安装

- 安装处自带定位装置,保证流量计处于正确的安装位置。
- 请确保已经放置密封圈。
- 拧紧连接螺母,正确安装流量计。

8.4 旋转屏幕

产品出厂时,默认的屏幕显示方向与管道内的正向气体流向相反。客户可根据实际环境,对屏幕进行180°的旋转。

说明:为保证 S453 稳定可靠工作,在需要旋转屏幕时,只推荐旋转 180°。

注意!

旋转屏幕的操作需严格按以下步骤进行。其他任何操作行为都可能对产品造成损害。

 用六角扳手松开并取下连接轴下方的4颗螺丝及 弹簧垫片。

 抓住显示屏的金属壳,缓慢将连接轴分离并拉开。
 注意:拉出的长度需小于 10 mm,以防止损害 内部线束。

- 观察测量轴上气体方向标识,按测量轴上气体流 向将显示屏外壳旋转180°。
 注意:为防止防止损害内部线束,不得按相反方 向旋转或者旋转超过180°。
- **4.** 将分离的金属壳重新与连接轴装配在一起。重新 装配时要确保密封圈是在连接轴的密封槽内。
- 5. 用六角扳手重新锁紧 4 颗螺丝及弹簧垫片。 注意:务必装上弹簧垫片,防止造成产品松动。

8.5 电气连接

连接电缆时请注意以下几点:

- 屏蔽电缆剥线的长度要尽可能的短。
- 信号线需要屏蔽并接地。
- 未使用的电缆出线口必须用封闭装置封闭。
- 电缆的外径应当在6至8mm。
- 单条线缆的横截面积应该在 0.25 mm² ~ 0.75 mm²之间。
- 电缆密封螺帽的螺纹是 M20 / 1.5。

8.5.1 连接图

打开 S453 后盖, S453 内部引脚分布如下图所示:

8.5.2 引脚分配

S453 提供两种输出选项,下表列出了输出选项的各引脚的分配情况。

引脚输出选项		A 23-	
기까	Modbus/RTU	Modbus/TCP	奋 在
1	地线	地线	
2	GND_SDI	GND_SDI	
3	+V _B	+V _B	24 いつて 中酒
4	-V _B	-V _B	
5	SDI	SDI	数字接口,用于接入 SUTO iTEC 仪器
6	D+	SPE_P	
7	D-	SPE_N	MODDUS/RIU
8	GND	SPE_E	Linemet 定该
9	$+I_1$	$+I_1$	-4 mA ≈ 20 mA output 1
10	-I ₁	-I ₁	4 mA ~ 20 mA output 1
11	+I ₂	$+I_2$	4 mA = 20 mA output 2
12	-I ₂	-I ₂	4 mA ~ 20 mA output 2
13	Earth	Earth	
14	+Pulse/Alarm	+Pulse/Alarm	时心中 / 扫 敬 松 山
15	-Pulse/Alarm	-Pulse/Alarm	 你件 / 很 管 制 出
16	DIR	DIR	·····································
17	DIR	DIR	孤里刀円澗八

9 信号输出

9.1 模拟与脉冲输出

S453提供2路模拟信号输出和1路脉冲/报警信号输出。所有信号均为电气隔离的。

9.1.1 模拟输出

模拟输出为有源输出。

信号及负载	: 4 mA \sim 20 mA, RL < 400 Ω
重复性	: < 0.3 % 的读数
分辨率	: 0.005 mA

单向流量

标准的单向输出为0到最大流量,其对应关系如下:

模拟输出	对应的流量值
4 mA	0
20 mA	最大流量

此外,输出大小可以调整以满足所需的测量范围。即用户可以将 4 mA 和 20 mA 对应为其他的流量值。

9.1.2 脉冲/报警输出

脉冲/报警输出是一个常开(normal open)的隔离,需考虑极性。

耐压限流: 30 VDC, 200 mA

脉冲宽度: 10 毫秒 ~ 100 毫秒 (取决于流量)

脉冲输出

每秒钟输出的脉冲个数不能超过49个。

如果流量过大,S453无法按照默认设置(一个脉冲为一个累积量单位)提供相应的输出值。此时,可使用S4C-FS App将脉冲设置为每10个累积量单位/1个脉冲或每100个累积量单位/1个脉冲。

例如:设置为10m³/1脉冲时,当有10m³的累积量时,S453则输出一个脉冲。

报警输出

以下通道可设置报警:

- 流量(正向)
 流量(正向)
- 实际流速(反向)
 实际流速(反向)
- 温度
 压力

具体的设置,见11.2节报警设置中的介绍.

9.2 Modbus/RTU 接口

Modbus 通信需要将总线中最后一台设备的终端电阻打开。如果 S453 是总线中最 后一台设备,连接板上的电阻开关需要拨到 ON 的位置。

终端电阻开关

设备类型	从属设备

地址范围	1至251 (总线地址可以用软件设置)
物理接口	RS-485(符合 EIA/TIA-485 标准)
波特率	1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 Baud
传输模式	ASCII, RTU

响应时间 直接获取数据为0毫秒 ~ 255 毫秒 (可配置)

Modbus 通信接口的默认设置如下:

模式	RTU
波特率	19200
设备地址	产品序列码后两位
帧/ 奇偶校验 / 停止位	8, N, 1
响应时间	1 秒
响应延迟	0 毫秒
帧间间隔	7 个字符

本设备返回给主机的响应消息为:功能码 03

字节顺序的信息如下表所示:

今十届中	顺序					
子节顺序	1st	2nd	3rd	4th	剱 佑尖尘	
1-0-3-2	Byte 1 (MMMMMMM*)	Byte 0 (MMMMMMM *)	Byte 3 (SEEEEEEE)	Byte 2 (EMMMMMMM *)	FLOAT	
1-0-3-2	Byte 1	Byte 0 LSB	Byte 3 MSB	Byte 2	UINT32 INT32	
1-0	Byte 1 MSB	Byte 0 LSB			UINT16 INT16	
1-0	Byte 1 XXX *	Byte 0 DATA			UINT8 INT8	

* S: 信号, E: 指数, M: 小数, XXX: 没有值

MSB 和 LSB 的解释

MSB: Most Significant Byte,最高有效字节优先,也称大端字节顺序。

LSB: Least Significant Byte, 最低有效字节优先,也称小端字节顺序。

例如,对于 MSB 优先系统,数据 0x12345678 在 CPU 的 RAM 中的存储顺序为 0x12,0x34,0x56,0x78。对于 LSB 优先系统,数据 0x12345678 在 CPU 的 RAM 中的存储顺序为 0x78,0x56,0x34,0x12。

在 Modbus 帧中,一个4字节数据的传输顺序为 Byte1-Byte0-Byte3-Byte2。对于 MSB 优先系统,主机须将字节顺序变为 Byte3-Byte2-Byte1-Byte0 才能使数据正确显示。对于 LSB 优先系统,主机需将字节顺序变为 Byte0-Byte1-Byte2-Byte3 才能使数据正确显示。

备注: Modbus 的通信参数及其他设置可使用手机 App **S4C-FS** 或 Windows 服 务软件进行修改。

9.2.1 Modbus 保持寄存器

寄存器地址	数据类型	数据长度	通道描述	R/W
		系约	充信息	
2000	INT16U	2-Byte	组 ID: 1 (在 2 字节的数据中占据较高的 4 位,其 余的保留)	R
2001	INT16U	2-Byte	设备 ID S451: 0x1013, S453 0x1014	R
2002	INT32U	4-Byte	序列号	R
2004	INT16U	2-Byte	高字节为固件版本,低字节为硬件版本	R
2005	DOUBLE	8-Byte	校准日期 格式: BCD代码,第一个字节是日期,第二个 字节是月份,第三个字节是年份的前两位, 第四个字节是年份的后两位。 例如,09.01.2024。数据排列如下: 0x09,0x01,0x20,0x24	R
2007	INT16U	2-Byte	自校正日期起计的有效天数	R
2008	INT16U	2-Byte	测量的通道数量	R
2009	string	16-Byte	设备名称: S451 或 S453	R
		Ч		
2100			设置 (最多50个保持寄存器)	R/W
		通道	值信息	
2200	INT16U	2-Byte	通道1的单位+分辨率+数据类型	R
2201	INT16U	2-Byte	通道2的单位+分辨率+数据类型	R
			最多50个通道,取决于流量计	
2207	INT16U	2-Byte	通道8的单位+分辨率+数据类型	
		状态利	口通道值	
2300	INT16U	2-Byte	状态	R
2301	FLOAT / INT32U	2-Byte	Channel 1 的测量值	R
2315	FLOAT / INT32U	2-Byte	Channel 8 的测量值	R

9.2.2 通道值信息

单位+分辨率+数据类型

• 第一个字节为单位。单位的编码如下。

参数	单位	编码
温度	°C	1
	°F	2
流速	m/s	10
	ft/min	11
	Nm/s	12
	Nft/min	13
体积流量	Sm³/h	14
	Sm³/min	15
	SI/min	16
	SI/s	17
	Scfm	18
	Nm³/h	19
	Nm ³ /min	20
	NI/min	21
	NI/s	22
	Ncfm	23

参数	单位	编码
累积量	Sm ³	24
	SI	25
	Scf	26
	Nm³	27
	NI	28
	Ncf	29
压力	kPa	35
	MPa	36
	bar	38
	psi	39
质量累积量	kg	47
质量流量	kg/h	52
	kg/min	53

• 第二个字节

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
数据类	型:			分辨率	:		
0 浮点 1 4字 2 双精	数 节无符号 度	整数		0 0 1 0.0 2 0.0 3 0.0 4 0.0	0 00 000		

"状态"通道

状态信息由地址为2300的寄存器定义。最高位(bit 15)用于指示用户是否更改了 设置。该寄存器被主机读取后,其 bit15 被置为0。其余位用于指示各测量通道是 否正常工作。

位	描述
Bit15	0: 自上次从主机读取数据后,流量计设置从未更改
	1: 自上次从主机读取数据后,流量计设置已被更改
Bit0	0 :测量通道1正常
	1 :测量通道 1 不正常
Bit1	0: 测量通道2正常
	1:测量通道2不正常
Bit7	0: 测量通道8正常
	1: 测量通道8不正常

通道值

通道值从通道1到通道50(最大值),其长度和数据类型在单位+分辨率+类型部 分定义。最多可支持50个通道。

寄存器地址	数据类型	通道号	描述	R/W
2301	FLOAT	通道 1	流量	R
2303	FLOAT	通道2	实际流速	R
2305	INT32U	通道3	累积量	R
2307	FLOAT	通道4	流量 (反向)	R
2309	FLOAT	通道 5	实际流速 (反向)	R
2311	INT32U	通道6	累积量 (反向)	R
2313	FLOAT	通道 7	压力	R
2315	FLOAT	通道8	温度	R

通道、单位、分辨率和类型

寄存器地址	通道	单位	分辨率	类型	
2200	流量	Sm³/h, Scfm, Sl/min, kg/h, Nm³/h, Ncfm, Nl/min	0.1		
		Sm³/min, Sl/s, kg/min, Nm³/min, Nl/s	0.01	Float	
		kg/s	0.001		

2201	広告	ft/min	0	
2201	沉迷	m/s	0.1	FIOAL
2202	累积量	Sm ³ , Sl, kg, Scf, Nm ³ , Nl, Ncf	0	INT32U
		Sm ³ /h, Scfm, Sl/min, kg/h, Nm ³ /h, Ncfm, Nl/min	0.1	Float
2203	流量 (R)	Sm³/min, Sl/s, kg/min, Nm³/min, Nl/s	0.01	FIUAL
		kg/s	0.001	
2204	流速 (R)	ft/min	0	Fleat
2204		m/s	0.1	FIUAL
2205	累积量 (R)	Sm ³ , Sl, kg, Scf, Nm ³ , Nl, Ncf	0	INT32U
2206		psi	0.1	Fleat
	压刀	bar, MPa	0.01	FIUAL
2207	温度	°C, °F	0.1	Float

9.2.3 气体流量计的特殊设置

寄存器地址	数据类型	描述	R/W
2100	Float	内径(毫米)(仅适用于管道式)	R/W
2102	INT16U	气体类型	R/W
2103	INT16U	校准气体1,空气	R
2104	INT16U	校准气体 2、替代气体	R
2105	Float	参考温度	R/W
2107	Float	参考压力	R/W
2109	Float	终端范围,单位 m/s 或 ft/min	R
2111	Float	用户斜率(限制范围从0.5到1.5)	R
2113	Float	截止速度,单位 m/s 或 ft/min	R
2115	INT16U	过滤等级	R/W
2116	INT16U	流量单位	R/W
2117	INT16U	累积量单位	R/W
2118	INT16U	压力单位	R/W
2119	INT16U	温度单位	R/W
2120	INT16U	模拟通道2的路由(压力或温度):0压力,1温度	R/W

		模拟通道1始终为流量	
2121	Float	4-20 mA 通道 1 的比例低值	R/W
2123	Float	4-20 mA 通道 1 的比例高值	R/W
2125	Float	4-20 mA 通道 2 的比例低值	R/W
2127	Float	4-20 mA 通道 2 的比例高值	R/W

气体类型的校准/操作编码

气体类型	编码
Air	0
N ₂	1
Ar	2
CO ₂	3
He	4
H ₂	5
CH₄	6

气体类型	编码
丙烷	7
丁烷	8
O ₂	9
N_2O	10
天然气	11
混合气体	12

说明:

1. 模拟输出的比例调整

当流量单位或参考条件发生变化时,流量计会自动改变模拟输出的比例。相关单位也可能会更改,具体内容见下一条。

2. 单位之间的关系

流量单位发生变化时,累积量和流速会相应自动变化。反之亦然。

流量单位	累积量单位	流速单位	
Sm³/min, Sm³/h; Nm³/min, Nm³/h	Sm³ Nm³	m/s	
Scfm Ncfm	Scf Ncf	ft/min	
kg/h, kg/min, kg/s	kg	m/s	
SI/min, SI/s NI/min, NI/s	NI SI	m/s	

3. 压力/温度单位变化计模拟输出比例

当温度或压力单位变化时,相应的输出比例也随之自动改变。

4. 流量单位变化和参考条件

当流量单位变化时,参考条件不会自动变化,需要手工修改。

5. 错误命令处理

若执行任何无效设置,流量计将响应功能代码, MSB 设置为1。在数据字段中 有错误代码: 01 指非法功能代码, 02 非法数据地址, 03 非法数据值。

9.3 Modbus/TCP 接口

S453 支持 Modbus/TCP 单对以太网 (over single pair Ethernet) 通信,该方式 适用于非爆炸环境。

Modbus/TCP 单对以太网输出为 10Base-T1L 物理层标准,通过单根平衡双绞线 铜缆进行 10 Mb/s 以太网通信。该接口提供供电。

该10Base-T1L工作于2.4 Vpp 模式,电缆长度可达1000米。S453 的电源支持24V DC 12类电源 (IEEE 802.3 cg),并集成有 PoDL (数据线供电)控制器。

注意!

该接口的通信方式不适用于危险环境。

9.4 S453 信号输出与用户设备的连接

下图展示了 S453 的各种信号输出是如何与客户的设备相连的。图中, "SUTO 仪器"指 S453。

模拟输出 (隔离)

10 使用显示屏进行操作

S453 的显示屏上会显示启动信息、测量数据、及状态信息。在显示屏上可进行如下操作:

- 查看所有的测量通道。
- 查看错误及状态信息。
- 修改流量计设置。

10.1 显示屏上的信息

S453上电后,屏幕上会显示初始化过程。初始化完成,可显示实时测量值。其主页如下所示:

屏幕上有三个键可进行操作。

10.1.1 状态栏中的图标

状态栏中出现的图标实时显示流量计运行中的状态或报警,具体含义如下表。

10.1.2 报警和错误码

当发生报警时,状态栏会出现报警图标 🎔。

要查看详细的报警信息,按 S453 上的回车键,则出现**菜单**页面。在**菜单**页面上点击 信息 > 报警信息。报警的错误码及描述将会出现在屏幕上,如下所示。

所有的报警错误码及其含义描述如下。

错误代码	描述
00 00 00 01	EEPROM 通信错误
00 00 00 02	ADC 通信错误
00 00 00 04	选项版通信错误
00 00 00 08	无线通信错误
00 00 00 10	温度传感器通信错误
00 00 01 00	外壳温度过低
00 00 02 00	外壳温度过高
00 00 04 00	介质温度过低

00 00 08 00	介质温度过高
00 01 00 00	PT20 传感器损坏
00 02 00 00	PT1000 传感器损坏
00 04 00 00	PT20 传感器短路
00 08 00 00	PT1000 传感器短路
01 00 00 00	累积量校验和错误

10.2 操作

点回车键,出现菜单可进行选择。

((**)) 🖉	۲	10:00	((++))	Ø	۲		10:01
←	菜单		-		解		
设置		>					
校准		>					
信息		>		0	0	0	0
解锁		>					

在进行设置或校准时,需要点解锁菜单,并输入4位数的密码。

说明:初始密码是你的 S453 的设备序列号的后四位。

如果停止操作超过3分钟,显示将跳转回主界面。再次操作时,需要重新输入密码。 说明:以下设置无法在显示屏上操作,只能在手机 App 上操作:

- 报警设置
- 测量参数:参照标准,流量方向,累积量计数器
- 输出设置:模拟、脉冲、Modbus 和以太网
- 以上设置的默认值

详细信息参见11章用手机App进行配置。

10.3 菜单树

11 用手机 App 进行配置

11.1 可配置的参数

根据需要,可对 S453 流量计进行参数设置,下表列出了这些参数的信息。

类别	参数设置		默认值	
测量	管道内径 流量单位 累积量单位 参照标准	54.0 Sm³/h Sm³ P _s = 100	0 hPA T _s = 2	20°C
	气体类型选择 累积量计数器 流量方向	Air 0 Sm³ 标准		
模拟输出1	测量通道	流量		
	量程		4 mA	20 mA
		标准	0	最大流量
		可变	任何流量值	任何流量值
模拟输出 2	测量通道 量程	介质压力 4 mA: 0 20 mA: 或 介质温度 4 mA: -4 20 mA:	.00 MPa 1.6 MPa 或 5 40°C +140°C	.0 MPa
脉冲输出	脉冲/警报 每单位累积量输出脉冲个	脉冲 〜数 1		
Modbus	设备地址 波特率 帧/奇偶校验/停止位 传输模式	1 19200 8, N, 1 RTU		
Modbus/TCP	DHCP	Enable		
单对以太网	MAC	工厂设置		
	IP地址 子网掩码 网关	动态 IP(静态 IP(当 DHCP=disa 当 DHCP=ena	able) ble)
	ICP 端目	504		

Timeout ≥200 ms

使用 S4C-FS 手机 App 可对 S453 的所有参数进行设置,也可以使用显示屏对常用 的参数进行设置。

11.2 报警设置

参数	描述	取值
报警设置	指启用还是禁用报警功能。	○ : 禁用 ○ : 启用
选择通道	选择设置报警的通道。	- 流量(正向) - 实际流速(正向) - 流量(反向) - 实际流速(反向) - 温度 - 压力
选择报警	下限报警: 指报警门限相对较低。 上限报警: 指报警门限相对较高。	- 下限报警 - 上限报警
阈值	阈值和回差用于触发或清除一个报警。 对下限报警,当通道的测量值 ≤ 阈值时,下限报 警被触发。当通道的测量值 > (阈值+回差)时, 下限报警被清除。	阈值默认值=0 回差默认值=0
回差	对上限报警,当通道的测量值 ≥ 阈值时,上限报 警被触发。当通道的测量值 < (阈值-回差)时,上 限报警被清除。	

11.3 数据记录器设置

该流量计带有数据记录器,可在 S4C-FS App 上设置记录器的参数、查看测量数据的图表、以文件的形式导出测量数据。

11.3.1 设置记录器参数

1. 在 S4C-FS App 上, 点 设置 > 记录器 > 日志设置页面。

11:37 🖸	© ⁵⁶ iil 5 6 iil 21
← 日志	
日志设置	>
图表	>

2. 设置或查看记录器的如下参数。

参数	说明	设置界面		
记录器启动	开始或停止记录器的记录功能。	16:07 🌔 😚 📶 🐂 🔁		
/停止		← 日志设置		
起始记录 日期 / 时间	查看开始记录的日期和时间。	记录器启动/停止:		
结束记录 日期/时间	查看停止记录的日期和时间。	起始记录日期/时间: 2024-11-28 09:18		
记录数目	记录器已经记录的数据数量。	(注声记录日期/时间) 正在运行		
记录间隔	记录数据的时间间隔。	记录数目: 1199994		
(1111.33)		记录间隔(mm:ss): 00 : 01 设置		

说明:数据记录器开始记录数据后,不允许修改流量计的任何设置,包括在流量计的显示屏上进行的设置,以及 S4C-FS App 上的设置。如果在此期间你试图修改设置,将出现"记录器正在运行,不允许修改设置"的提示。

11.3.2 查看数据图表

在 S4C-FS App 上,点 设置 > 记录器 > 图表 进入图表查看界面。

 选择要查看的图表的时间段。可选择的时间段如下: 	16:07 😻 ¹⁶ :11 ¹⁶ :11 중 12 <
 。最后一小时 。最后一天 上周 上个月 时间段 用户可自己选择某个开始时间和结束时间。 2. 点 图表,则进入图表界面,可以看到所选	 时间段: 2025-01-15 15:00-2025-01-15 15:59 ● 最后一小时 ● 最后一天 ● 上周 ● 上个月 ● 时间段
时间段的数据图表。	图表
在图表界面: Y轴表示测量数据。 X轴指时间。 时间段定义符合时间规范 ISO 8601 (YYYY/MM/DD hh:mm)。	16:09 ● ************************************
点击页面右上方的 图标 ■ , 可选择要显示的 通道。每次只能显示一个通道。	264
点击 ── 或者 ── 移动时间段。	88 0 2025/01/15 15:00 で 将数据导出到文件

11.3.3 查看累积量图表

点击 S4C-FS App 在线 页面上的柱状图图标 🕛 进入累积量图表页面。可选择 每日、每周、每月来查看相应的图表。

每日:显示最近7天的数据 (不包括今天)。
 点
 向前移动一天,点
 ○ 向后移动一天。

点击页面上的表格图标 👯,测量数据则以表格的形式显示。

- 每周:显示最近10周的数据。
- 每月:显示最近12个月的数据。

累积量 (Sm ³) [1] ① ①
11 Image: Control of the second sec
56 42 28
42
28
28
28
14
0
\bigcirc \bigcirc

- 11.3.4 导出日志文件
 - 测量数据可以以 csd 或者 csv 的格式导出。
 - 用 SUTO iTEC 的 S4A 软件打开 *csd* 文件,因为 *csd* 格式是 SUTO iTEC 的 私有文件格式。
 - csv 文件可以用通用的软件打开,如微软的办公软件 Excel。
 - 导出的文件有默认的名字,可以修改。

1. 点 发送者 则调用相关的操作系统 App 加email 微信 将文件发	16:50 % 🔊 👘 👘	71
App, 如 email, 版旧, 初文作及 送至这些 App 上。	← 将数据导出到文件	
	选择文件格式:	
	O CSD	
	O csv	
	文件名: S453-20240820-25011! .csd	b
	发送者	
2. 在操作系统 App 上,会让你确认 是否发送:	ing and a second	
 点 Ok 则发送文件。 点 Capacel 则不发送。 信留左 	AirDrop Mail WeChat DingTalk	
。 点 Cancel 则不反迭,停留在 当前页面。	Copy G	
	Print	
	Save to Files	
	Add Tags	
	J2BOX J	

11.4 使用手机 App S4C-FS

S4C-FS 是一款支持 Android 和 iOS 系统的 手机 App。利用该 App,可查看在线测量值,并对 SUTO iTEC 的流量计进行设置。

可从 Google Play 商店、苹果商店或 SUTO iTEC 网站上下载 S4C-FS App,并安装在手 机上使用。

关于流量计参数的设置,可查看 S4C-FS 操 作手册,该手册可在 SUTO iTEC 网站上下载。 (输入 S4C-FS 进行搜索并下载)

注意!

对设置修改不正确可能导致错误的测量结果!如果您不熟悉设置,请与制造商联系。

12 校准

仪器出厂前已校准。校准日期印刷在与仪器一起提供的证书上。仪器的精度会受现 场条件的制约,如油、高湿度或其他杂质会影响校准和精度。建议每年与制造商联 系校准调整产品。仪器保修不包括校准服务。请留意校准证书上最后的校准期限。

13 维护

清洁仪器建议只使用蒸馏水或者异丙醇。如果污染物不能被去除,则仪器必须由制造商检查和维修。

14 废弃物的处置

电子设备是可循环利用的材料,不属于生活垃圾。设备、配件和外 箱的处置必须符合当地法规的要求。废弃物也可由产品制造商进行 回收,请与制造商联系。

15 附录 - 流动调整器介绍

当流量计的进气端直管段长度无法满足要求时,加装流动调整器可以调整管道内的 流速分布,从而确保测量精度。

通过使用流动调整器,进气端直管段最小可以仅为管径的 5 至 8 倍。流动调整器可以使通过其后的流速分布达到理想状态,从而不受进气端条件的影响。

说明: 该流动调整器仅用于安装至 R 螺纹的测量管段。

15.1 尺寸

单位: mm

Size	Α	В	ΦC	ΦD	E	F
DN15	≥ 13.2	56.0	29.0	21.4	17.0	R1/2"
DN20	≥ 14.5	62.0	38.0	26.6	17.0	R3/4"
DN25	≥ 16.8	68.3	38.6	33.7	20.0	R1"
DN32	≥ 19.1	81.7	52.6	42.4	25.0	R1-1/4"
DN40	≥ 19.1	86.8	64.4	48.4	25.0	R1-1/2"
DN50	≥ 23.4	105.7	79.1	59.5	29.0	R2-1/2"
DN65	≥ 26.7	130.0	104.0	75.8	36.0	R3"
DN80	≥ 29.8	131.5	129.0	88.5	36.0	R4"

15.2 安装

15.2.1 预安装

如果流动调整器是和流量计一起购买的,流动调整器在工厂已经和流量计安装在一起。此时,流量计和流动调整器已经一起进行了校准,您收到货品后便可使用。

15.2.2 单独购买或者安装改造

- 如果流动调整器是单独购买,或者在现有的流量计上加装流动调整器,需要 将流量计和流动调整器一起进行校准,以保证测量的精度。
- 重新校准流量计时,请联系销售代理提供指导和协助,以确保正确地进行重新校准。

流动调整器

15.3 订货信息

订货号	测量管段 (R 螺纹)
A1071	DN15
A1072	DN20
A1073	DN25
A1074	DN32

订货号	测量管段 (R 螺纹)
A1075	DN40
A1076	DN50
A1077	DN65
A1078	DN80

SUTO iTEC GmbH

Grißheimer Weg 21 D-79423 Heitersheim Germany

Tel: +49 (0) 7634 50488 00 Email: <u>sales@suto-itec.com</u> Website: <u>www.suto-itec.com</u> 希尔思仪表(深圳)有限公司 深圳市南山区中山园路1001号 TCL国际E城D3栋A单元11层

电话: +86 (0) 755 8619 3164 邮箱: <u>sales.cn@suto-itec.com</u> 网址: <u>www.suto-itec.com</u>

版权所有 ©

如有错漏另行更正 S453_IM_CN_V2025-1